Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis

David J Biau, Caroline Tournoux, Sandrine Katsahian, Peter J Schranz and Rémy S Nizard

BMJ 2006;332:995-1001; originally published online 7 Apr 2006; doi:10.1136/bmj.38784.384109.2F

Updated information and services can be found at: http://bmj.com/cgi/content/full/332/7548/995

These include:

Data supplement

"Additional details"
http://bmj.com/cgi/content/full/bmj.38784.384109.2F/DC1

References

This article cites 30 articles, 10 of which can be accessed free at:
http://bmj.com/cgi/content/full/332/7548/995#BIBL

Rapid responses

4 rapid responses have been posted to this article, which you can access for free at:
http://bmj.com/cgi/content/full/332/7548/995#responses

You can respond to this article at:
http://bmj.com/cgi/eletter-submit/332/7548/995

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections

Articles on similar topics can be found in the following collections

Orthopaedic and Trauma Surgery (319 articles)

Notes

To order reprints of this article go to:
http://www.bmjournals.com/cgi/reprintform

To subscribe to BMJ go to:
http://bmj.bmjournals.com/subscriptions/subscribe.shtml
Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis

David J Biau, Caroline Tournoux, Sandrine Katsahian, Peter J Schranz, Rémy S Nizard

Abstract

Objectives To compare bone-patellar tendon-bone autografts with hamstring autografts for reconstruction of the anterior cruciate ligament.

Data sources Medline, WebSPIRS, Science Citation Index, Current Contents databases, and Cochrane Central Register of Controlled Trials.

Review methods All randomised controlled trials reporting one or more outcome related to stability (instrumented measurement of knee laxity, Lachman test, or pivot shift test) and morbidity (anterior knee pain, kneeling test, loss of extension, or graft failure). Study quality was assessed by using a 5 point scale. Random effect models were used to pool the data. Heterogeneity in the effect of treatment was tested on the basis of study quality, randomisation status, and number of tendon strands used.

Results 24 trials of 18 cohorts (1512 patients) met the inclusion criteria. Study quality was poor for nine studies and fair for nine studies. The weighted mean difference of the instrumented measurement of knee laxity was 0.36 (95% confidence interval 0.01 to 0.71; P = 0.04). Relative risk of a positive Lachman test was 1.22 (1.01 to 1.47; P = 0.04), of anterior knee pain 0.57 (0.44 to 0.74; P < 0.0001), of a positive kneeling test 0.26 (0.14 to 0.48; P < 0.0001), and of loss of extension 0.52 (0.34 to 0.80; P = 0.003). Other results were not significant.

Conclusion Morbidity was lower for hamstring autografts than for patellar tendon autografts. Evidence that patellar tendon autografts offer better stability was weak. The poor quality of the studies calls into question the robustness of the analyses.

Introduction

The incidence of anterior cruciate ligament tears in the United States is 0.38 per 1000 each year. 1 In the US in 1996, doctors repaired this ligament in more than 100 000 patients (72 000 outpatients and 35 300 inpatients). 2 Expectations of preventing meniscal and chondral damage and a return to the level of activity before injury are high. 3

The best choice of graft for reconstruction is debatable. 4 The bone-patellar tendon-bone autograft (the criterion standard) is still preferred to the newer hamstring tendon autograft for the first reconstruction. 5-7 Patellar tendon grafts are thought to offer better stability, but hamstring grafts have lower morbidity. Randomised clinical trials show contradictory results. 8-11

Two meta-analyses, one of four and one of six randomised or quasi-randomised clinical trials, could not clarify the results of most outcomes. 12-13

Most surgeons perform only one type of reconstruction at first surgery. 14 Therefore, the choice of surgeon made by the referring general practitioner decides the type of graft and the outcomes the patient will benefit.

We performed a meta-analysis to compare the two types of autografts for reconstruction of the anterior cruciate ligament to provide up to date knowledge for doctors who have to decide between the two transplants with regard to stability and morbidity.

Methods

Search strategy

We searched Medline, WebSPIRS, Science Citation Index, Current Contents databases, and Cochrane Central Register of Controlled Trials up to 14 March 2005; we also cross checked the reference lists of published trials (search terms are on bmj.com). We had no restrictions on date of publication, language, or publication status. In addition, we sent a copy of selected studies (all randomised controlled trials that compared the two treatments, with no restrictions regarding outcome or follow-up time) to all authors of these studies, main and specialised orthopaedic journals, and organisations with an interest in the topic to ask if they knew of any other published or unpublished trials. The closing date for retrieving studies and additional data was 14 May 2005.

Trials selection and study characteristics

We selected trials that were randomised or quasi-randomised (providing groups had been set up over the same period), included patellar tendon and hamstring autograft reconstruction without augmentation in the comparison, had a mean follow-up of more than one year, and had one or more primary outcome related to stability (instrumented measurement of knee laxity, Lachman test, or pivot shift test) and morbidity (anterior knee pain, kneeling test, loss of extension, or graft failure) (see appendix A on bmj.com for a description of the most often used tests). 15

Data abstraction and assessment of validity

Two of the authors (DJB and CT) independently extracted data on study design, setting, population, condition of interest, interventions and co-interventions, outcomes, and the quality of the studies by using standardised forms. Disagreements were resolved by discussion and if necessary with the help of other authors (SK and RSN). All authors of the selected studies were contacted if necessary to retrieve relevant unpublished data. The
quality of the studies was scored on a five point scale (appendix B on bmj.com).

Quantitative data synthesis

We entered eligible trials into RevMan 4.2.7 software (Cochrane Collaboration) and sorted them according to inclusion and exclusion criteria. Results of the Lachman test (0 ≥ 1, pivot shift test (0 ≥ 1), anterior knee pain (no ≥ 1), kneeling test (pain or impossible ≥ 1), extension loss ($\geq 5^\circ$), and graft failure (no ≥ 1); failures due to infection were excluded) were treated as binary variables. The results of instrumented measurement of knee laxity were treated as continuous variables with only a four strand hamstring autograft in the treatment group. Patients had mean ages of 22-31 (11 studies). The male to female ratio ranged from 1.1 to men only (12 studies). Follow-up ranged from 12 to 102 months, with a mean of 36 months (table 1).

All patients in the control group received a patellar tendon autograft. In the treatment group, a four strand hamstring autograft was used in 10 studies, a four or three strand autograft in two studies, a four strand hamstring autograft in the treatment group.

Results

Eligible studies

The search strategy generated 1494 studies. Twenty four studies were relevant according to the title, abstract, and complete retrieval of the article (fig 1). We contacted nine authors to retrieve additional data and clarify possible overlap of patients; seven provided useful information.

On 28 April 2006 bmj.com

Study characteristics

The studies were published between 1991 and 2005, and analysed 1312 patients (765 in the control group and 747 in the hamstring group). Patients had mean ages of 22-31 (11 studies). The male to female ratio ranged from 1.1 to men only (12 studies). Follow-up ranged from 12 to 102 months, with a mean of 36 months (table 1).

All patients in the control group received a patellar tendon autograft. In the treatment group, a four strand hamstring autograft was used in 10 studies, a four or three strand autograft in two studies, a four strand hamstring autograft in the treatment group.

Table 1 Details of trials of bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of the anterior cruciate ligament

<table>
<thead>
<tr>
<th>Study (year)</th>
<th>Publication</th>
<th>Mean age of patients</th>
<th>Sex ratio</th>
<th>No of patients analysed</th>
<th>Mean follow-up (months)</th>
<th>No of HS strands</th>
<th>Patellar tendon fixation</th>
<th>Hamstring fixation*</th>
<th>Overall quality of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aglietti (2)**</td>
<td>1997 NA NA</td>
<td>60 68 4</td>
<td>Sc</td>
<td>W Sc</td>
<td>W</td>
<td>Sc</td>
<td>W 3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aglietti (2)**</td>
<td>2004 25 5.1</td>
<td>129 24 4</td>
<td>Sc</td>
<td>Sc Sc</td>
<td>Sc 3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson**</td>
<td>2001 22 1.5</td>
<td>68 35 2</td>
<td>Sc Sc St St 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aune**</td>
<td>2001 28 1.1</td>
<td>61 24 4</td>
<td>EB EB EB EB 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beard**</td>
<td>2001 NA NA</td>
<td>45 12 4</td>
<td>EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beynon**</td>
<td>2002 29 1.2</td>
<td>44 36 2</td>
<td>EB EB EB EB 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Callaway**</td>
<td>1997 NA NA</td>
<td>95 34 2</td>
<td>EB EB EB EB 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engh**</td>
<td>2003 28 2.3</td>
<td>66 24 3 and 4</td>
<td>EB EB EB EB 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eriksson (2)**</td>
<td>2001 26 1.4</td>
<td>154 33 4</td>
<td>EB EB EB EB 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fedor (3)**</td>
<td>2003 26 2.6</td>
<td>37 36 4</td>
<td>EB EB EB EB 4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hames**</td>
<td>2004 NA NA</td>
<td>45 12 NA NA NA NA 1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graham**</td>
<td>2005 22 Men only 85 81 4</td>
<td>EB EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jasonson**</td>
<td>2003 NA NA</td>
<td>89 24 4</td>
<td>EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landel**</td>
<td>2005 20 2.0</td>
<td>118 24 3 and 4</td>
<td>EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mudder**</td>
<td>1991 23 2.4</td>
<td>72 29 4</td>
<td>EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O'Neill (2)**</td>
<td>2001 NA NA</td>
<td>225 102 2</td>
<td>EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agipka**</td>
<td>2002 28 4.0</td>
<td>40 24 2</td>
<td>EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shamp**</td>
<td>2002 31 2.0</td>
<td>68 33 4</td>
<td>EB EB EB EB 2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*No of studies with the same patients.

Heterogeneity between trials: $P \leq 0.1$ indicated significant heterogeneity.

To look for variation in the effect of treatment based on study quality (score of $< 3 \geq 3$), randomisation status (randomised ≥ 3), and number of strands used in the hamstring tendon group ($< 4 \geq 4$ strands), we performed quantitative interaction tests. We performed subgroup analysis to assess the size of the effect of treatment on stability outcomes for studies with only a four strand hamstring autograft in the treatment group.

Page 2 of 7

BMJ Online First bmj.com

Fig 1 Selection process for meta-analysis of trials to compare bone-patellar tendon-bone autografts with hamstring autografts for reconstruction of the anterior cruciate ligament
autograft in four studies,1,2,4,10,11,13,14 and the number of strands used was unknown in two studies.15 The use of arthroscopy was reported to in 16 studies,2,4,6-10,12,14,15,17-20 and unknown in two studies.15,21 Preconditioning of the graft was reported in one study,22 cycling in five studies,4,6,9,10,14 securing under tension in eight studies,2,4,6,7,10,13-15 and flexion degree of the knee when the graft was fixed in 12 studies.2,4,6,7,10,13-15 The type of femoral and tibial fixation varied greatly between studies. The programme of postoperative rehabilitation varied between studies but was similar for both groups in 17 studies.2,4,7-10,12,14,15,17-20

Study quality was poor in nine studies,6-9,10,12,14,16,17,19 (scored ≤2) and fair in nine studies (scored 3 or 4).7-10,12,14,15,17-20 No studies fulfilled all quality items (scored 5). The randomisation process was described and appropriate for six studies.7-10,14 Six studies were quasi-randomised: in three allocation based on alternation,7-9 in two on date of birth,7,10 and in one on the day of surgery.20 Withdrawal and dropout rates were acceptable for 13 studies,2,4,6,7,10,12,13-15,19 and intention to treat principle was referred to and adequate in one study.14

Quantitative data synthesis

Stability

Table 2 shows the results of the meta-analysis of outcome measures. Analysis of the instrumented measurement of knee laxity was restricted to low force (89N) and maximum manual testing. The difference in laxity between the operated side and the normal contralateral side was greater in the treatment group than in the control group (table 2). The instrumented measurement of knee laxity at 89N was available for 239 patients in the treatment group and 209 patients in the control group in five studies.8,10,10,11,14 The weighted mean difference was 0.36 mm (95% confidence interval 0.01 to 0.71; P=0.04) and the test for heterogeneity was not significant (P=0.84) (fig 2). Knee laxity at maximum manual force was available for 85 and 84 patients in the treatment and control groups in three studies.8,10,11 The weighted mean difference was 0.70 mm (0.02 to 1.39; P=0.04) and the test for heterogeneity was not significant (P=0.30).

Data on the Lachman test were available for 754 patients in eight studies.2,4,6,7,10,14,19 The test was positive in 122 of 355 patients in the treatment group (34%) and 118 of 399 in the control group (30%). The relative risk of a positive Lachman test was 1.22 (1.01 to 1.47; P=0.04). The test for heterogeneity was not significant (P=0.79) (fig 3).

Data on the pivot shift test were available for 815 patients in 10 studies.2,4,6,7,10,14,16,17,19 The test was positive in 99 of 411 patients in the treatment group (24%) and 78 of 404 in the control group (19%). The relative risk of a positive pivot shift test was 1.23 (0.95 to 1.6; P=0.11). The test for heterogeneity was not significant (P=0.68).

Morbidity

Table 2 shows the results of the meta-analysis of outcome measures. Data on anterior knee pain were available for 1011 patients in 14 studies.2,4,6-10,12,14,17-20 Anterior knee pain was reported in 69 of 536 patients in the treatment group (13%) and 105 of 475 in the control group (22%). The relative risk of anterior knee pain was 0.57 (0.44 to 0.74; P<0.0001). The test for heterogeneity was not significant (P=0.93) (fig 4).

Table 2 Outcome measures in meta-analysis of comparisons with patellar tendon autografts

<table>
<thead>
<tr>
<th>Outcome</th>
<th>2, 3, and 4 strand hamstring autografts</th>
<th>4 strand hamstring autografts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Weighted mean difference or relative risk (95% CI)</td>
<td>P value</td>
</tr>
<tr>
<td>IMKL (89N)*</td>
<td>0.36 (0.01 to 0.71) mm</td>
<td>0.04</td>
</tr>
<tr>
<td>IMKL (maximum manual force*)</td>
<td>0.70 (0.02 to 1.39) mm</td>
<td>0.04</td>
</tr>
<tr>
<td>Lachman test</td>
<td>1.22 (1.01 to 1.47)</td>
<td>0.04</td>
</tr>
<tr>
<td>Pivot test</td>
<td>1.23 (0.95 to 1.60)</td>
<td>0.11</td>
</tr>
<tr>
<td>Loss of extension</td>
<td>0.52 (0.34 to 0.78)</td>
<td>0.03</td>
</tr>
<tr>
<td>Anterior knee pain</td>
<td>0.57 (0.44 to 0.74)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Kneeling test</td>
<td>0.26 (0.14 to 0.48)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Graft failure</td>
<td>1.33 (0.72 to 2.44)</td>
<td>0.35</td>
</tr>
</tbody>
</table>

*Weighted mean difference.†Relative risk for the remainder.

IKML=instrumented measurement of knee laxity, NA=not applicable.

Fig 2 Instrumented measurement of knee laxity at 89N after reconstruction of anterior cruciate ligament. Treatment refers to hamstring autografts; control refers to bone-patellar tendon-bone autografts.
Data from the kneeling test were available for 334 patients in four studies. The test was positive for 22 of 187 patients in the treatment group (12%) and 75 of 147 in the control group (51%). The relative risk of a positive kneeling test was 0.26 (0.14 to 0.48; P < 0.0001). The test for heterogeneity was not significant (P = 0.13) (fig 5).

Data on loss of extension were available for 920 patients in 10 studies. Loss of extension ≥5° was reported in 28 of 460 patients in the treatment group (6%) and 43 of 460 in the control group (9%). The relative risk of loss of extension was 0.52 (0.34 to 0.80; P = 0.003). The test for heterogeneity was not significant (P = 0.67) (fig 6).

Data on graft failure were available for 1088 patients in 11 studies. Graft failure was reported in 22 of 534 patients in the treatment group (4.1%) and 19 of 554 patients in the control group (3.4%). The relative risk of graft failure was 0.20 (0.12 to 0.35; P = 0.0002). The test for heterogeneity was not significant (P = 0.22) (fig 7).

Fig 3 Lachman test after reconstruction of the anterior cruciate ligament. Treatment refers to hamstring autografts; control refers to bone-patellar tendon-bone autografts

Fig 4 Anterior knee pain after reconstruction of the anterior cruciate ligament. Treatment refers to hamstring autografts; control refers to bone-patellar tendon-bone autografts

Fig 5 Results of kneeling test after reconstruction of the anterior cruciate ligament. Treatment refers to hamstring autografts; control refers to bone-patellar tendon-bone autografts
failure was 1.33 (0.73 to 2.44; P = 0.35). The test for heterogeneity was not significant (P = 0.99).

Subgroup analyses
Quantitative interaction tests on the effect of treatment based on study quality, randomisation status, and number of strands were not significant (table 3).

In studies using a four strand hamstring autograft (table 1), stability outcomes remained in favour of patients with patellar tendon reconstructions, but the difference between groups was not significant (table 2).

Discussion
Patients with hamstring autografts reported fewer anterior knee symptoms and extension deficits than patients with patellar tendon autografts, and we found no evidence that patellar tendon autografts provided better stability than four strand hamstring autografts.

Knee stability
Many factors during and after surgery can influence anterior tibial translation: cycling of the graft, degree of knee flexion and the tension applied to the graft at the time of fixation, bone to bone versus tendon to bone healing, and rehabilitation. To reduce confounding variables, authors standardised most of the procedures (surgical technique and rehabilitation) in both groups. However, these variables could have different effects on knee laxity in the two types of autograft even when they were distributed equally between groups, and the better outcome for knees reconstructed with patellar tendon autografts could have been overestimated owing to these methodological issues.

Stabilisation of the joint should have a protective effect against degenerative joint disease. However, to prevent later osteoarthritis, it seems more important to stop pivoting of the joint (pivot shift test) than to reduce anterior-posterior laxity (Lachman test and the instrumented measurement of knee laxity); we found no difference between groups with regard to the pivot shift test.

Knee morbidity
Morbidity at the graft harvest site is the most important factor in the differences seen between the two groups. The decreased incidence of symptoms in the anterior knee when the graft is harvested from the contralateral side highlights the important part played by graft harvest in anterior knee pain. It has been argued that morbidity at the harvest site is lower by the end of the first year, but all studies had a follow-up of more than 12 months. Even if improvements in surgical techniques and rehabilitation programmes can reduce anterior knee symptoms after reconstruction using patellar tendon autografts, these patients are still prone to develop anterior knee symptoms and late patellofemoral osteoarthritis.

The two main reasons for loss of mobility after anterior cruciate ligament surgery are impingement and capsulitis (arthrofibrosis). Technical errors that cause impingement should be
Research

distributed equally between the two groups. Development of arthrofibrosis after reconstruction has been much debated and results from an exaggerated inflammatory response, or is secondary to delayed mobilisation, infection, or sympathetic dystrophy. Patients who have a patella tendon reconstruction are susceptible to anterior knee pain and synovitis, and anterior knee symptoms after patella tendon reconstruction can result in delayed or inadequate rehabilitation and deferred recovery of full extension, which may cause permanent loss of extension.

Limitations of the study

Many questions that could affect the results remain unanswered. The effect of medical professionals plays an important part in trials not investigating drugs—the results could have been biased if surgeons had more expertise in one of the two techniques. An expertise based randomised controlled trial might enhance the validity of such a comparison. Patients’ characteristics (such as age, sex, level of activity, and weight) and technical issues (such as cycling of the graft, degree of knee flexion and graft tension when securing the graft, and fixation devices) cannot be analysed in a meta-analysis of aggregate patient data, and ideally data from individual patients should be analysed. We are currently investigating this.

Conclusions

Patients with hamstring autografts report fewer anterior knee symptoms and extension deficits than patients with patellar tendon autografts. This is important and should be taken into account when advising patients of certain ethnic origins and religions (for example, Asian people who often kneel or squat and Muslims who need to kneel for prayer) or patients who do sports (such as jumping) where extensor mechanisms are used extensively. The small improvement in stability of patellar tendon autografts compared with four strand hamstring autografts is of questionable importance for most patients and should be honestly discussed with patients who are more likely to benefit.

The poor methodological quality of the studies calls into question the robustness of the analyses, so it is difficult to make definitive conclusions. The methodological quality of surgical trials needs to be improved.

We thank S Abdolrazik, L Jjerberg, K Eriksson, J Feller, A Harilainen, K Jansson, J Kurtas, G Laxdal, M Röpke, and K Webster who gave additional information on published and unpublished trials and helped in the literature search. We also thank A Anderson, D Brand, E Eriksson, K Erikson, J Feller, M Hantes, M Maracci, H Roos, R Smith, and J Webb who helped in the literature search. Their participation does not necessarily mean that they agree with the conclusions of our study.

Contributors: DJB conceived, designed, and developed the protocol and search strategy for the review; contacted authors, journals, and organisations; identified and extracted data from included trials; analysed and interpreted the results; and wrote the manuscript. CT identified and extracted data from included trials and participated in the analysis and interpretation of results and revision of the manuscript. SK analysed and interpreted the results and participated in the drafting and revision of the manuscript. PJS participated in the analysis and interpretation of results and in the drafting and revision of the manuscript. RSN contributed to the conception, design, and development of the protocol, the interpretation of the results, and the drafting and revision of the manuscript. DJB is guarantor.

Funding: None.

Competing interests: None declared.

Ethical approval: Not required.

What is already known on this topic

Hamstring autografts and patellar tendon autografts are the two preferred options for reconstruction of knees with damaged anterior cruciate ligaments.

The stability and morbidity outcomes of these autografts are unclear.

What this study adds

Patients with hamstring autografts report fewer anterior knee symptoms and extension deficits than patients with patellar tendon autografts.

The stability of patellar tendon autografts and four strand hamstring autografts is similar.